skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bahmani, Keivan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, we utilize progressive growth-based Generative Adversarial Networks (GANs) to develop the Clarkson Fingerprint Generator (CFG). We demonstrate that the CFG is capable of generating realistic, high fidelity, 512×512 pixels, full, plain impression fingerprints. Our results suggest that the fingerprints generated by the CFG are unique, diverse, and resemble the training dataset in terms of minutiae configuration and quality, while not revealing the underlying identities of the training data. We make the pre-trained CFG model and the synthetically generated dataset publicly available at https://github.com/keivanB/Clarkson_Finger_Gen 
    more » « less
  2. Many fingerprint recognition systems capture four fingerprints in one image. In such systems, the fingerprint processing pipeline must first segment each four-fingerprint slap into individual fingerprints. Note that most of the current fingerprint segmentation algorithms have been designed and evaluated using only adult fingerprint datasets. In this work, we have developed a human-annotated in-house dataset of 15790 slaps of which 9084 are adult samples and 6706 are samples drawn from children from ages 4 to 12. Subsequently, the dataset is used to evaluate the matching performance of the NFSEG, a slap fingerprint segmentation system developed by NIST, on slaps from adults and juvenile subjects. Our results reveal the lower performance of NFSEG on slaps from juvenile subjects. Finally, we utilized our novel dataset to develop the Mask-RCNN based Clarkson Fingerprint Segmentation (CFSEG). Our matching results using the Verifinger fingerprint matcher indicate that CFSEG outperforms NFSEG for both adults and juvenile slaps. The CFSEG model is publicly available at \url{this https URL} 
    more » « less
  3. Face recognition (FR) systems are fast becoming ubiquitous. However, differential performance among certain demographics was identified in several widely used FR models. The skin tone of the subject is an important factor in addressing the differential performance. Previous work has used modeling methods to propose skin tone measures of subjects across different illuminations or utilized subjective labels of skin color and demographic information. However, such models heavily rely on consistent background and lighting for calibration, or utilize labeled datasets, which are time-consuming to generate or are unavailable. In this work, we have developed a novel and data-driven skin color measure capable of accurately representing subjects' skin tone from a single image, without requiring a consistent background or illumination. Our measure leverages the dichromatic reflection model in RGB space to decompose skin patches into diffuse and specular bases. 
    more » « less
  4. Biometric recognition allows a person to be identified by comparing feature vectors derived from a person's physiological characteristics. Recognition is dependent on the permanence of the biometric characteristics over long periods of time. There was been limited work evaluating the footprint as a potential biometric. This paper presents a longitudinal study of toe prints in children to understand if this biometric modality could be used reliably as a child grows. Data was collected and analyzed in children ages 4-13 years over five visits, spaced approximately six months apart, giving two years of data. This is the first footprint collection spanning this broad age range in children. Footprints were segmented into separate toe prints to examine whether current fingerprint recognition technology can provide accurate results on toe prints. Data was analyzed using two available fingerprint matchers, Verifinger and Bo-zorth3 from NIST Biometric Image Software (NBIS). Ver-ifinger provides the best verification match scores using the toe prints, especially when using the hallux, the large toe. The hallux toe on Verifinger provides verification rates of 0% FAR and FRR for images collected on the same day and a FRR of 6.44% at a 1% FAR after two years have passed between collections. Additional longitudinal data is being collected to further these results. 
    more » « less