skip to main content


Search for: All records

Creators/Authors contains: "Bahmani, Keivan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 15, 2024
  2. Many fingerprint recognition systems capture four fingerprints in one image. In such systems, the fingerprint processing pipeline must first segment each four-fingerprint slap into individual fingerprints. Note that most of the current fingerprint segmentation algorithms have been designed and evaluated using only adult fingerprint datasets. In this work, we have developed a human-annotated in-house dataset of 15790 slaps of which 9084 are adult samples and 6706 are samples drawn from children from ages 4 to 12. Subsequently, the dataset is used to evaluate the matching performance of the NFSEG, a slap fingerprint segmentation system developed by NIST, on slaps from adults and juvenile subjects. Our results reveal the lower performance of NFSEG on slaps from juvenile subjects. Finally, we utilized our novel dataset to develop the Mask-RCNN based Clarkson Fingerprint Segmentation (CFSEG). Our matching results using the Verifinger fingerprint matcher indicate that CFSEG outperforms NFSEG for both adults and juvenile slaps. The CFSEG model is publicly available at \url{this https URL} 
    more » « less
  3. In this work, we utilize progressive growth-based Generative Adversarial Networks (GANs) to develop the Clarkson Fingerprint Generator (CFG). We demonstrate that the CFG is capable of generating realistic, high fidelity, 512×512 pixels, full, plain impression fingerprints. Our results suggest that the fingerprints generated by the CFG are unique, diverse, and resemble the training dataset in terms of minutiae configuration and quality, while not revealing the underlying identities of the training data. We make the pre-trained CFG model and the synthetically generated dataset publicly available at https://github.com/keivanB/Clarkson_Finger_Gen 
    more » « less
  4. Face recognition (FR) systems are fast becoming ubiquitous. However, differential performance among certain demographics was identified in several widely used FR models. The skin tone of the subject is an important factor in addressing the differential performance. Previous work has used modeling methods to propose skin tone measures of subjects across different illuminations or utilized subjective labels of skin color and demographic information. However, such models heavily rely on consistent background and lighting for calibration, or utilize labeled datasets, which are time-consuming to generate or are unavailable. In this work, we have developed a novel and data-driven skin color measure capable of accurately representing subjects' skin tone from a single image, without requiring a consistent background or illumination. Our measure leverages the dichromatic reflection model in RGB space to decompose skin patches into diffuse and specular bases. 
    more » « less
  5. Biometric recognition allows a person to be identified by comparing feature vectors derived from a person's physiological characteristics. Recognition is dependent on the permanence of the biometric characteristics over long periods of time. There was been limited work evaluating the footprint as a potential biometric. This paper presents a longitudinal study of toe prints in children to understand if this biometric modality could be used reliably as a child grows. Data was collected and analyzed in children ages 4-13 years over five visits, spaced approximately six months apart, giving two years of data. This is the first footprint collection spanning this broad age range in children. Footprints were segmented into separate toe prints to examine whether current fingerprint recognition technology can provide accurate results on toe prints. Data was analyzed using two available fingerprint matchers, Verifinger and Bo-zorth3 from NIST Biometric Image Software (NBIS). Ver-ifinger provides the best verification match scores using the toe prints, especially when using the hallux, the large toe. The hallux toe on Verifinger provides verification rates of 0% FAR and FRR for images collected on the same day and a FRR of 6.44% at a 1% FAR after two years have passed between collections. Additional longitudinal data is being collected to further these results. 
    more » « less
  6. Liveness Detection (LivDet)-Face is an international competition series open to academia and industry. The competition’s objective is to assess and report state-of-the-art in liveness / Presentation Attack Detection (PAD) for face recognition. Impersonation and presentation of false samples to the sensors can be classified as presentation attacks and the ability for the sensors to detect such attempts is known as PAD. LivDet-Face 2021 * will be the first edition of the face liveness competition. This competition serves as an important benchmark in face presentation attack detection, offering (a) an independent assessment of the current state of the art in face PAD, and (b) a common evaluation protocol, availability of Presentation Attack Instruments (PAI) and live face image dataset through the Biometric Evaluation and Testing (BEAT) platform. The competition can be easily followed by researchers after it is closed, in a platform in which participants can compare their solutions against the LivDet-Face winners. 
    more » « less
  7. Fingerprint capture systems can be fooled by widely accessible methods to spoof the system using fake fingers, known as presentation attacks. As biometric recognition systems become more extensively relied upon at international borders and in consumer electronics, presentation attacks are becoming an increasingly serious issue. A robust solution is needed that can handle the increased variability and complexity of spoofing techniques. This paper demonstrates the viability of utilizing a sensor with time-series and color-sensing capabilities to improve the robust-ness of a traditional fingerprint sensor and introduces a comprehensive fingerprint dataset with over 36,000 image sequences and a state-of-the-art set of spoofing techniques. The specific sensor used in this research captures a traditional gray-scale static capture and a time-series color capture simultaneously. Two different methods for Presentation Attack Detection (PAD) are used to assess the benefit of a color dynamic capture. The first algorithm utilizes Static-Temporal Feature Engineering on the fingerprint capture to generate a classification decision. The second generates its classification decision using features extracted by way of the Inception V3 CNN trained on ImageNet. Classification performance is evaluated using features extracted exclusively from the static capture, exclusively from the dynamic capture, and on a fusion of the two feature sets. With both PAD approaches we find that the fusion of the dynamic and static feature-set is shown to improve performance to a level not individually achievable. 
    more » « less
  8. Premise

    Leaf morphology is dynamic, continuously deforming during leaf expansion and among leaves within a shoot. Here, we measured the leaf morphology of more than 200 grapevines (Vitisspp.) over four years and modeled changes in leaf shape along the shoot to determine whether a composite leaf shape comprising all the leaves from a single shoot can better capture the variation and predict species identity compared with individual leaves.

    Methods

    Using homologous universal landmarks found in grapevine leaves, we modeled various morphological features as polynomial functions of leaf nodes. The resulting functions were used to reconstruct modeled leaf shapes across the shoots, generating composite leaves that comprehensively capture the spectrum of leaf morphologies present.

    Results

    We found that composite leaves are better predictors of species identity than individual leaves from the same plant. We were able to use composite leaves to predict the species identity of previously unassigned grapevines, which were verified with genotyping.

    Discussion

    Observations of individual leaf shape fail to capture the true diversity between species. Composite leaf shape—an assemblage of modeled leaf snapshots across the shoot—is a better representation of the dynamic and essential shapes of leaves, in addition to serving as a better predictor of species identity than individual leaves.

     
    more » « less